Advance Master and Ph D Degree Course Course Title: 'Metagenomics and Genetic Engineering' Credit 4 (3 + 1)

Faculty member: Prof B. K. Konwar, Molecular Biology and Biotechnology

Theory

- 01. (a) Microbial communities: (i) Soil habitat, (ii) Un-culturable microorganisms, and (iii) Culturable microorganisms
 - (b) Microbial species for beneficial products and processes
- 02. (a) Metagenomics principles, practices and approaches
 - (b) Soil, water, plant and animal metagenomics
 - (c) Metagenomics for desirable genes
 - (d) Metagenomics tools for novel compounds
- 03. Prospect of metagenomics (mg) in (a) agriculture, (b) environmental remediation, (c) clinical science, (d) quorum sensing, (e) life sciences, (f) industry, (g) renewable energy
- 04. Metagenomic library construction and analysis of mg library including functional screening
- 05. Approaches to metagenomics (i) Sequence based analysis and (ii) Function based analysis
- 06. Methods for accessing soil and other metagenomes
- 07. Expression vector/host systems
- 08. Restriction digestion of mgDNA, extraction of DNA fragments from gel (by QIA quick gel extraction kit), isolation of expression vector (pET-32a) plasmid (from *E. Coli*), *r*estriction digestion of vector plasmid, ligation, transformation
- 09. Isolation and restriction digestion of recombinant plasmid
- 10. Sequencing of the cloned DNA, sequence analysis and phylogenetic tree construction
- 11. Analysis of the cloned enzyme gene: (a) Phylogeny, (b) Protein sequence, and (c) Multiple sequence alignment
- 12. Expression study
- 13. Purification and optimization of recombinant protein: (i) SDS polyacrylamide gel electrophoresis, (ii) determination of active lipase using zymographic study (iii) quantification of total protein
- Determination of activity of purified protein: (i) homology model and validation for protein structure prediction, (ii) biochemical characterization of purified protein, and (iii) dose dependent enzyme activity

- 15. Substrate specificity and effect of substrate concentration
- 16. Effect of various factors on the enzyme activity
- 17. Thermal stability study

Practical 'Metagenomics for industrial enzyme lipase'

- 01. Soil sample collection from suitable sites and isolation of mgDNA, purification, restriction digestion, gel electrophoresis and elusion of desirable fractions.
- 02. Multiplication of non-recombinant pET-32a plasmid harbouring bacteria.
- 03. Isolation and purification of pET-32a plasmid, quality and size determination through gel electrophoresis.
- 04. Cloning of mgDNA fragments into pET-32a
- 05. Multiplication of E. coli BL21 (DE3) competent cells
- 06. Transformation of E. coli BL21 (DE3) competent cells with recombinant plasmid
- 07. Analysis of transformation frequency using non-recombinant (pET-32a) plasmid
- 08. Functional screening of mglibrary for the lipase gene
- 09. Isolation and restriction digestion of recombinant plasmid
- 10. Sequencing of the cloned DNA
- 11. Expression study: purification and optimization of recombinant protein: (i) SDS polyacrylamide gel electrophoresis, (ii) determination of active lipase using zymographic study and (iii) quantification of total protein
- 12. Substrate specificity: effect of (a) substrate concentration, (ii) surfactants, (iii) metal ions, (iv) chelating and emulsifying agent, (v) common salt, and (v) organic solvents

Reference books

- 01. Metagenomics: Theory, Methods and Applications, Pub. Caister Academic Press, Ed. Diana Marco *Universidad Nacional de Cordoba, Argentina* Publication 2010, ISBN: 978-1-904455-54-7
- 02. Metagenomics: Current Innovations and Future Trends, Pub. Caister Academic Press Ed. Diana Marco *Microbiology Department, Estación Experimental del Zaidín (CSIC), Granada, Spain,* Publication 2011, ISBN: 978-1-904455-87-5
- 03. Metagenomics: Methods and Protocols, EdS. Streit, Wolfgang, Daniel, Rolf, Pub. 2010, ISBN 978-1-60761-823-2

Lecture Plan

Course Title: 'Metagenomics and Genetic Engineering' Credit 4 (3 + 1)

Faculty member: Prof. B. K. Konwar, Molecular Biology and Biotechnology

S.No Topic	Lectures
01(a) Microbial communities: (i) Soil habitat, (ii) Un-culturable	
microorganisms, and (iii) Culturable microorganisms	02
(b) Microbial species for beneficial products and processes	01
02(a) Metagenomics principles, practices and approaches	02
(b) Soil, water, plant and animal metagenomics	02
(c) Metagenomics for desirable genes	02
(d) Metagenomics tools for novel compounds	02
03 Prospect of metagenomics (mg) in (a) agriculture, (b) environmental	
remediation, (c) clinical science, (d) quorum sensing, (e) life sciences, (f)	
industry, (g) renewable energy	03
04 Metagenomic library construction and analysis of mg library including	02
functional screening	
05 Approaches to metagenomics (i) Sequence based analysis and (ii)	02
Functional analysis	
06 Methods for accessing soil and other metagenomes	02
07 Expression vector/host systems	01
08 Restriction digestion of mgDNA, extraction of DNA fragments from gel	
(by QIA quick gel extraction kit), isolation of expression vector (pET-	
32a) plasmid (from E. Coli), restriction digestion of vector plasmid,	
ligation, transformation	03
09 Isolation and restriction digestion of recombinant plasmid	01
10 Sequencing of the cloned DNA, sequence analysis and phylogenetic tree	
construction	02
11 Analysis of the cloned enzyme gene: (a) Phylogeny, (b) Protein sequence,	
and (c) Multiple sequence alignment	02
12 Expression study	01
13 Purification and optimization of recombinant protein: (i) SDS	
polyacrylamide gel electrophoresis, (ii) determination of active lipase	
using zymographic study, and (iii) quantification of total protein	03
14 Determination of activity of purified protein: (i) homology model and	
validation for protein structure prediction, (ii) biochemical	
characterization of purified protein, and (iii) dose dependent enzyme	
activity	03
15 Substrate specificity and effect of substrate concentration	02
16 Effect of various factors on the enzyme activity	02
17 Thermal stability study	01
Total	41